

Welcome to climate_category’s documentation!

Contents:

	Climate categories
	Included categorizations

	Included conversions between categorizations

	Status

	License

	Citation

	Installation
	Stable release

	From sources

	Usage
	Categorizations

	Conversions

	API
	Module contents

	Data
	Categorizations

	Conversions

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Deploying

	Credits
	Developers

	Libraries

	Changelog
	0.10.1 (2024-01-25)

	0.10.0 (2024-01-25)

	0.9.2 (2023-06-22)

	0.9.1 (2023-06-15)

	0.9.0 (2023-06-14)

	0.8.5 (2023-05-23)

	0.8.4 (2023-05-23)

	0.8.3 (2023-05-23)

	0.8.2 (2023-05-15)

	0.8.1 (2023-04-26)

	0.8.0 (2023-04-26)

	0.7.1 (2021-11-25)

	0.7.0 (2021-11-25)

	0.6.3 (2021-11-05)

	0.6.2 (2021-11-05)

	0.6.1 (2021-11-04)

	0.6.0 (2021-10-22)

	0.5.4 (2021-10-18)

	0.5.3 (2021-10-12)

	0.5.2 (2021-05-18)

	0.5.1 (2021-05-04)

	0.5.0 (2021-03-23)

	0.4.0 (2021-03-17)

	0.3.2 (2021-03-16)

	0.3.1 (2021-03-16)

	0.3.0 (2021-03-16)

	0.2.2 (2021-03-09)

	0.2.1 (2021-03-09)

	0.2.0 (2021-03-09)

	0.1.0 (2021-01-18)

Indices and tables

	Index

	Module Index

	Search Page

Climate categories

[image: _images/climate_categories.svg]
 [https://pypi.python.org/pypi/climate_categories][image: Documentation Status]
 [https://climate-categories.readthedocs.io/en/latest/?badge=latest][image: _images/zenodo.4590232.svg]
 [https://doi.org/10.5281/zenodo.4590232]Commonly used codes, categories, terminologies, and nomenclatures used in climate
policy analysis in a nice Python package.
The documentation can be found at: https://climate-categories.readthedocs.io.

Included categorizations

	Name

	Title

	IPCC1996

	IPCC GHG emission categories (1996)

	IPCC2006

	IPCC GHG emission categories (2006)

	IPCC2006_PRIMAP

	IPCC GHG emission categories (2006) with additional categories

	CRF1999

	Common Reporting Format GHG emissions categories (1999)

	CRF2013

	Common Reporting Format GHG emissions categories (2013)

	CRF2013_2021

	CRF categories extended with country specific categories from
2021 submissions

	CRF2013_2022

	CRF categories extended with country specific categories from
2022 submissions

	CRF2013_2023

	CRF categories extended with country specific categories from
2023 submissions

	BURDI

	BUR GHG emission categories (DI query interface)

	BURDI_class

	BUR GHG emission categories (DI query interface) + classifications

	CRFDI

	CRF GHG emission categories (DI query interface)

	CRFDI_class

	CRF GHG emission categories (DI query interface) + classifications

	GCB

	Global Carbon Budget CO2 emission categories

	RCMIP

	RCMIP emissions categories

	gas

	Gases and other climate-forcing substances

	ISO3

	Countries, country groups, and other areas from ISO 3166

	ISO3_GCAM

	dito, plus regions used by the GCAM integrated assessment model

Included conversions between categorizations

	IPCC1996 <-> IPCC2006

Status

Climate categories is still in development and the API and names of categorizations
are still subject to change.

License

Copyright 2021, Potsdam-Institut für Klimafolgenforschung e.V.

Copyright 2021, Robert Gieseke

Copyright 2023-2024, Climate Resource Pty Ltd

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Citation

If you use this library and want to cite it, please cite it as:

Mika Pflüger, Annika Günther, Johannes Gütschow, and Robert Gieseke. (2024-01-25).
pik-primap/climate_categories: climate_categories Version 0.10.1.
Zenodo. https://doi.org/10.5281/zenodo.10569044

Installation

Stable release

To install Climate categories, run this command in your terminal:

$ pip install climate_categories

This is the preferred method to install Climate categories, as it will always install
the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Climate categories can be downloaded from the Github repo [https://github.com/pik-primap/climate_categories].

You can either clone the public repository:

$ git clone git://github.com/pik-primap/climate_categories

Or download the tarball [https://github.com/pik-primap/climate_categories/tarball/master]:

$ curl -OJL https://github.com/pik-primap/climate_categories/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Categorizations

Included categorizations

In the climate_categories package, the categorizations are available directly at the top-level namespace, and as a dictionary in .cats:

[1]:

import climate_categories

climate_categories.cats

[1]:

{'IPCC1996': <Categorization IPCC1996 'IPCC GHG emission categories (1996)' with 233 categories>,
 'IPCC2006': <Categorization IPCC2006 'IPCC GHG emission categories (2006)' with 290 categories>,
 'IPCC2006_PRIMAP': <Categorization IPCC2006_PRIMAP 'IPCC GHG emission categories (2006) with custom categories used in PRIMAP' with 303 categories>,
 'CRF1999': <Categorization CRF1999 'Common Reporting Format GHG emissions categories (1999)' with 400 categories>,
 'CRF2013': <Categorization CRF2013 'Common Reporting Format GHG emissions categories (2013)' with 729 categories>,
 'CRF2013_2021': <Categorization CRF2013_2021 'Common Reporting Format GHG emissions categories (2013). Extended for 2021 CRF submissions.' with 960 categories>,
 'CRF2013_2022': <Categorization CRF2013_2022 'Common Reporting Format GHG emissions categories (2013). Extended for 2022 CRF submissions.' with 966 categories>,
 'CRF2013_2023': <Categorization CRF2013_2023 'Common Reporting Format GHG emissions categories (2013). Extended for 2023 CRF submissions.' with 967 categories>,
 'CRFDI': <Categorization CRFDI 'CRF GHG emission categories (DI query interface)' with 409 categories>,
 'CRFDI_class': <Categorization CRFDI_class 'CRF GHG emission categories (DI query interface) + classifications' with 1133 categories>,
 'BURDI': <Categorization BURDI 'BUR GHG emission categories (DI query interface)' with 237 categories>,
 'BURDI_class': <Categorization BURDI_class 'BUR GHG emission categories (DI query interface) + classifications' with 395 categories>,
 'GCB': <Categorization GCB 'Global Carbon Budget CO2 Emissions' with 9 categories>,
 'RCMIP': <Categorization RCMIP 'Emissions categories from the Reduced Complexity Model Intercomparison Project (RCMIP)' with 87 categories>,
 'gas': <Categorization gas 'climate-forcing gases' with 242 categories>,
 'ISO3': <Categorization ISO3 'ISO 3166-1 countries with climate-relevant groupings' with 264 categories>,
 'ISO3_GCAM': <Categorization ISO3_GCAM 'ISO 3166-1 countries with climate-relevant groupings with GCAM regions' with 456 categories>}

[2]:

climate_categories.IPCC2006

[2]:

<Categorization IPCC2006 'IPCC GHG emission categories (2006)' with 290 categories>

[3]:

climate_categories.cats["IPCC2006"]

[3]:

<Categorization IPCC2006 'IPCC GHG emission categories (2006)' with 290 categories>

Metadata for each categorization are accessible as properties:

[4]:

print(climate_categories.IPCC2006.name)
print(climate_categories.IPCC2006.title)
print(climate_categories.IPCC2006.comment)
print(climate_categories.IPCC2006.references)
print(climate_categories.IPCC2006.institution)
print(climate_categories.IPCC2006.last_update)
print(climate_categories.IPCC2006.version)

IPCC2006
IPCC GHG emission categories (2006)
IPCC classification of green-house gas emissions into categories, 2006 edition
IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Volume 1, Chapter 8, Table 8.2, https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html
IPCC
2010-06-30
2006

The categorization can be used as a dictionary mapping category codes to categories:

[5]:

climate_categories.IPCC2006["1.A"]

[5]:

<IPCC2006: '1.A'>

You can also query using alternative spellings of the code:

[6]:

climate_categories.IPCC2006["1A"]

[6]:

<IPCC2006: '1.A'>

For the categories, metadata is also available: a title, maybe a comment, all of its codes and possibly additional non-standard information in the info dictionary:

[7]:

one_a = climate_categories.IPCC2006["1.A"]
print(one_a.title)
print(one_a.comment)
print(one_a.codes)
print(one_a.info)

Fuel Combustion Activities
Emissions from the intentional oxidation of materials within an apparatus that is designed to raise heat and provide it either as heat or as mechanical work to a process or for use away from the apparatus.
('1.A', '1A')
{'gases': ['CO2', 'CH4', 'N2O', 'NOx', 'CO', 'NMVOC', 'SO2'], 'corresponding_categories_IPCC1996': ['1A']}

For hierarchical categorizations, you can also query for parent and child categories. Note that a list of sets of children is returned in case a category can be composed differently:

[8]:

climate_categories.IPCC2006["1.A"].children

[8]:

[{<IPCC2006: '1.A.1'>,
 <IPCC2006: '1.A.2'>,
 <IPCC2006: '1.A.3'>,
 <IPCC2006: '1.A.4'>,
 <IPCC2006: '1.A.5'>}]

[9]:

climate_categories.IPCC2006["1.A"].parents

[9]:

{<IPCC2006: '1'>}

Finally, you can check if a categorization is hierarchical, and for hierarchical categorizations you can check if the sum of all child categories should be equal to the sum of parent categories:

[10]:

print(f"Hierachical: {climate_categories.IPCC2006.hierarchical}")
print(f"Total sum: {climate_categories.IPCC2006.total_sum}")

Hierachical: True
Total sum: True

Visualization

The relationships between categories in a hierarchical categorization can be visualized in a tree-like fashion:

[11]:

Limit the maximum depth shown using `maxdepth`
print(climate_categories.IPCC2006.show_as_tree(maxdepth=2))

0 National Total
├1 Energy
├2 Industrial Processes and Product Use
├3 Agriculture, Forestry, and Other Land Use
├4 Waste
╰5 Other

[12]:

Print only a part of tree using `root`
print(climate_categories.IPCC2006.show_as_tree(root="1A1"))

1.A.1 Energy Industries
├1.A.1.a Main Activity Electricity and Heat Production
│├1.A.1.a.i Electricity Generation
│├1.A.1.a.ii Combined Heat and Power Generation (CHP)
│╰1.A.1.a.iii Heat Plants
├1.A.1.b Petroleum Refining
╰1.A.1.c Manufacture of Solid Fuels and Other Energy Industries
 ├1.A.1.c.i Manufacture of Solid Fuels
 ╰1.A.1.c.ii Other Energy Industries

Child sets in hierarchical categorizations

For hierarchical categorizations, it is possible that a category can be composed of multiple child sets. As an example, in emissions reporting it is possible to report industrial emissions either by industry sectors, or by fuel. In this case, the parent industry category has two sets of children: either all the industry sectors, or all of the fuels.

You can see this with two toy example categorizations included in climate_categories:

[13]:

import climate_categories.tests.examples

HierEx = climate_categories.tests.examples.HierEx()
print(
 "Hierarchical categorization with only one way to subdivide the top category:"
)
print(HierEx.show_as_tree())

HierAltEx = climate_categories.tests.examples.HierAltEx()
print(
 "\nHierarchical categorization with two ways to subdivide the top category:"
)
print(HierAltEx.show_as_tree())

Hierarchical categorization with only one way to subdivide the top category:
0 Total
├1 Sector 1
├2 Sector 2
╰3 Sector 3

Hierarchical categorization with two ways to subdivide the top category:
0 Total
╠╤══ ('0 Total's children, option 1)
║├1 Sector 1
║├2 Sector 2
║╰3 Sector 3
╠╕ ('0 Total's children, option 2)
║├a Fuel a
║├b Fuel b
║╰c Fuel c
╚═══

As you can see, alternative ways to subdivide a category are indicated with double lines in show_as_tree. Programmatically, the difference is clear because children contains a list of possible child sets:

[14]:

HierEx["0"].children

[14]:

[{<HierEx: '1'>, <HierEx: '2'>, <HierEx: '3'>}]

[15]:

HierAltEx["0"].children

[15]:

[{<HierAltEx: '1'>, <HierAltEx: '2'>, <HierAltEx: '3'>},
 {<HierAltEx: 'a'>, <HierAltEx: 'b'>, <HierAltEx: 'c'>}]

Finding leaf descendants

For purposes like re-calculating top-level categories from simple leaf categories, it is useful to find the descendants of a category which have no children. Use the leaf_children property to do so.

[16]:

HierEx["0"].leaf_children

[16]:

[{<HierEx: '1'>, <HierEx: '2'>, <HierEx: '3'>}]

Extending categorizations

Often, you want to use a common categorization, but for one reason or another, you have to add a couple of categories. This is possible:

[17]:

IPCC2006_lulucf_extra = climate_categories.IPCC2006.extend(
 name="IPCC2006_lulucf_extra",
 categories={
 "M0.EL": {
 "title": "Total excluding lulucf",
 "comment": "All emissions and removals except emissions from land use, land use change, and forestry",
 }
 },
 children=[("M0.EL", ("1", "2", "4", "5"))],
)

print(IPCC2006_lulucf_extra.name)
print(IPCC2006_lulucf_extra.title)
print(IPCC2006_lulucf_extra.comment)
print(IPCC2006_lulucf_extra.show_as_tree(maxdepth=2))

IPCC2006_IPCC2006_lulucf_extra
IPCC GHG emission categories (2006) + IPCC2006_lulucf_extra
IPCC classification of green-house gas emissions into categories, 2006 edition extended by IPCC2006_lulucf_extra
0 National Total
├1 Energy
├2 Industrial Processes and Product Use
├3 Agriculture, Forestry, and Other Land Use
├4 Waste
╰5 Other

M0.EL Total excluding lulucf
├1 Energy
├2 Industrial Processes and Product Use
├4 Waste
╰5 Other

If the canonical top level category of hierarchical categorizations is defined, you can also calculate the level of a category in the hierarchy:

[18]:

print(climate_categories.IPCC2006["0"].level)
print(climate_categories.IPCC2006["1.A"].level)

1
3

Pandas integration

For each categorization, the categories are also available as a pandas DataFrame:

[19]:

climate_categories.IPCC2006.df

[19]:

 API

API

Module contents

Access to all categorizations is provided directly at the module level, using the
names of categorizations. To access the example categorization Excat, simply use
climate_categories.Excat .

	
class climate_categories.Categorization(*, categories: dict[str, dict], name: str, title: str, comment: str, references: str, institution: str, last_update: date, version: None | str = None)

	Bases: object

A single categorization system.

A categorization system comprises a set of categories, and their relationships as
well as metadata describing the categorization system itself.

Use the categorization object like a dictionary, where codes can be translated
to their meaning using cat[code] and all codes are available using
cat.keys(). Metadata about the categorization is provided in attributes.
If pandas is available, you can access a pandas.DataFrame with all
category codes, and their meanings at cat.df.

	
name

	The unique name/code

	Type:

	str

	
references

	Citable reference(s)

	Type:

	str

	
title

	A short, descriptive title for humans

	Type:

	str

	
comment

	Notes and explanations for humans

	Type:

	str

	
institution

	Where the categorization originates

	Type:

	str

	
last_update

	The date of the last change

	Type:

	datetime.date

	
version

	The version of the Categorization, if there are multiple versions

	Type:

	str, optional

	
hierarchical

	True if descendants and ancestors are defined

	Type:

	bool

	
all_keys() → KeysView[str]

	Iterate over all codes for all categories.

	
conversion_to(other: Categorization | str) → Conversion

	Get conversion to other categorization.

If conversion rules for this conversion are not included, raises
NotImplementedError.

	
property df: DataFrame

	All category codes as a pandas dataframe.

	
extend(*, categories: None | dict[str, dict] = None, alternative_codes: None | dict[str, str] = None, name: str, title: None | str = None, comment: None | str = None, last_update: None | date = None) → CategorizationT

	Extend the categorization with additional categories, yielding a new
categorization.

Metadata: the name, title, comment, and last_update are updated
automatically (see below), the institution and references are deleted
and the values for version and hierarchical are kept.
You can set more accurate metadata (for example, your institution) on the
returned object if needed.

	Parameters:

	
	categories (dict, optional) – Map of new category codes to their specification. The specification is a
dictionary with the keys “title”, optionally “comment”, and optionally
“alternative_codes”.

	alternative_codes (dict, optional) – Map of new alternative codes. A dictionary with the new alternative code
as key and existing code as value.

	name (str) – The name of your extension. The returned Categorization will have a name
of “{old_name}_{name}”, indicating that it is an extension of the underlying
Categorization.

	title (str, optional) – A string to add to the original title. If not provided, “ + {name}” will be
used.

	comment (str, optional) – A string to add to the original comment. If not provided,
“ extended by {name}” will be used.

	last_update (datetime.date, optional) – The date of the last update to this extension. Today will be used if not
provided.

	Returns:

	Extended categorization

	Return type:

	Categorization

	
static from_pickle(filepath: str | Path | IO[bytes]) → CategorizationT

	De-serialize Categorization from a file written by to_pickle.

Note that this uses the pickle module, which executes arbitrary code in the
provided file. Only load from pickle files that you trust.

	
static from_python(filepath: str | Path | IO[bytes]) → CategorizationT

	De-serialize Categorization from a file written by to_python.

Note that this executes the python cache file. Only load from python cache files
you trust.

	
classmethod from_spec(spec: dict[str, Any]) → CategorizationT

	Create Categorization from a Dictionary specification.

	
classmethod from_yaml(filepath: str | Path | TextIO) → CategorizationT

	Read Categorization from a StrictYaml file.

	
items() → ItemsView[str, Category]

	Iterate over (primary code, category) pairs.

	
keys() → KeysView[str]

	Iterate over the codes for all categories.

	
to_pickle(filepath: str | Path) → None

	Serialize to a file using python’s pickle.

	
to_python(filepath: str | Path) → None

	Write spec to a Python file.

	
to_spec() → dict[str, Any]

	Turn this categorization into a specification dictionary ready to be written
to a yaml file.

	Returns:

	spec – Specification dictionary understood by from_spec.

	Return type:

	dict

	
to_yaml(filepath: str | Path) → None

	Write to a YAML file.

	
values() → ValuesView[Category]

	Iterate over the categories.

	
class climate_categories.Category(codes: tuple[str, ...], categorization: Categorization, title: str, comment: None | str = None, info: None | dict = None)

	Bases: object

A single category.

	
to_spec() → tuple[str, dict[str, str | dict | list]]

	Turn this category into a specification ready to be written to a yaml file.

	Returns:

	(code – Primary code and specification dict

	Return type:

	str, spec: dict)

	
class climate_categories.Conversion(*, categorization_a: Categorization, categorization_b: Categorization, rules: list[ConversionRule], auxiliary_categorizations: list[Categorization] | None = None, comment: str | None = None, references: str | None = None, institution: str | None = None, last_update: date | None = None, version: str | None = None)

	Bases: ConversionBase

Conversion between two categorizations.

This class collects functionality which needs access to the actual categorizations
and categories.

	
categorization_a

	The first categorization.

	Type:

	Categorization

	
categorization_b

	The second categorization.

	Type:

	Categorization

	
auxiliary_categorizations

	The auxiliary categorizations, if any.

	Type:

	list of Categorization, optional

	
rules

	The actual rules for conversion between individual categories or sets of
categories.

	Type:

	list of ConversionRule

	
comment

	Notes and explanations for humans.

	Type:

	str, optional

	
references

	Citable reference(s) for the conversion.

	Type:

	str, optional

	
institution

	Where the conversion originates.

	Type:

	str, optional

	
last_update

	The date of the last change.

	Type:

	datetime.date, optional

	
version

	The version of the ConversionRules, if there are multiple versions.

	Type:

	str, optional

	
describe_detailed() → str

	Detailed human-readable description of the conversion rules.

Sections are added for direct one-to-one mappings, one-to-many mappings,
many-to-one mappings, and many-to-many mappings, respectively.

Factors are shown at the start of the line if they don’t equal 1, like this:
-1 * IPCC1996 4 Agriculture
to indicate that category 4 should be subtracted.

	
find_over_counting_problems() → list[OverCountingProblem]

	Check if any category from one side is counted more than once on the
other side.

Note that the algorithm at the moment can’t reliably detect all over counting
problems and also some suspected problems might be fine under closer
examination, so use this function only to generate hints for possible problems.

	Returns:

	problems – All detected suspected problems.

	Return type:

	list of OverCountingProblem objects

	
find_unmapped_categories() → tuple[set[Category], set[Category]]

	Find categories for which no rule exists to map them.

	Returns:

	missing_categories_a, missing_categories_b – A list of categories missing from categorization_a and categorization_b,
respectively.

	Return type:

	set, set

	
relevant_rules(categories: set[HierarchicalCategory], source_categorization: Categorization | None = None, simple_sums_only: bool = False) → list[ConversionRule]

	Returns all rules which involve the given categories.

	Parameters:

	
	categories (set of HierarchicalCategory) – The categories to limit the rules to.

	source_categorization (Categorization, optional) – The categorization that the categories are part of, either
self.categorization_a or self.categorization_b.

	simple_sums_only (bool, default False) – If true, only consider rules where the given categories enter as simple
summands (i.e. with a factor of 1).

	Returns:

	All rules which touch the given categories.

	Return type:

	relevant_rules

	
reversed() → Conversion

	Returns the Conversion with categorization_a and categorization_b swapped.

	
class climate_categories.ConversionRule(factors_categories_a: dict[Category, int], factors_categories_b: dict[Category, int], auxiliary_categories: dict[Categorization, set[Category]], comment: str = '', csv_line_number: int | None = None, csv_original_text: str | None = None)

	Bases: object

A rule to convert between categories from two different categorizations.

Supports one-to-one relationships, one-to-many relationships in both directions and
many-to-many relationships. For each category, a factor is given which can also be
negative to model relationships like A = B - C.

Using auxiliary_categories, a rule can be restricted to specific auxiliary
categories only.

	
factors_categories_a

	Map of categories from the first categorization to factors. For a simple
addition, use factor 1, to subtract the category, use factor -1.

	Type:

	dict mapping categories to factors

	
factors_categories_b

	Map of categories from the second categorization to factors. For a simple
addition, use factor 1, to subtract the category, use factor -1.

	Type:

	dict mapping categories to factors

	
auxiliary_categories

	Map of auxiliary categorizations to sets of auxiliary categories. Not
all auxiliary categorizations need to be specified, and if an auxiliary
categorization is not specified (or an empty set of category codes is given),
the validity of the rule is not restricted.
If an auxiliary categorization is specified and categories are given, the
rule is only valid for the given categories. If multiple auxiliary
categorizations are given, the rule is only valid if all auxiliary
categorizations match.

	Type:

	dict[Categorization, set[Category]]

	
comment

	A human-readable comment explaining the rule or adding additional information.

	Type:

	str

	
cardinality_a

	The cardinality of the rule on side a. Is “one” if there is exactly one category
in factors_categories_a, and “many” otherwise.

	Type:

	str

	
cardinality_b

	The cardinality of the rule on side b. Is “one” if there is exactly one category
in factors_categories_b, and “many” otherwise.

	Type:

	str

	
is_restricted

	The rule is restricted if and only if for at least one auxiliary categorization
at least one category is specified, so that the rule is only valid for a
subset of cases. Otherwise, the rule is unrestricted and valid for all
cases.

	Type:

	bool

	
format_human_readable(categorization_separator: str = '⮁\n') → str

	Format the rule for humans.

	Parameters:

	categorization_separator (str, optional) – The categorization_separator is printed between the categories from
the source categorization and the categories from the target categorization
to make the difference clear.

	Returns:

	human_readable – The rule in a format optimized for error-free parsing by humans.

	Return type:

	str

	
format_with_lineno() → str

	Human-readable string representation of the rule with information in which
line in the CSV file it was defined, if that is available.

	
reversed() → ConversionRule

	Return the ConversionRule with categorization_a and categorization_b
swapped.

	
to_spec() → ConversionRuleSpec

	Return a serializable specification.

	Returns:

	spec

	Return type:

	ConversionRuleSpec

	
class climate_categories.HierarchicalCategorization(*, categories: dict[str, dict], name: str, title: str, comment: str, references: str, institution: str, last_update: date, version: None | str = None, total_sum: bool, canonical_top_level_category: None | str = None)

	Bases: Categorization

In a hierarchical categorization, descendants and ancestors (parents and
children) are defined for each category.

	
total_sum

	If the sum of the values of children equals the value of the parent for
extensive quantities. For example, a Categorization containing the Countries in
the EU and the EU could set total_sum = True, because the emissions of all
parts of the EU must equal the emissions of the EU. On the contrary, a
categorization of Industries with categories Power:Fossil Fuels and
Power:Gas which are both children of Power must set total_sum = False
to avoid double counting of fossil gas.

	Type:

	bool

	
canonical_top_level_category

	The level of a category is calculated with respect to the canonical top level
category. Commonly, this will be the world total or a similar category. If the
canonical top level category is not set (i.e. is None), levels are not
defined for categories.

	Type:

	HierarchicalCategory

	
ancestors(cat: str | HierarchicalCategory) → set[HierarchicalCategory]

	All ancestors of the given category, i.e. the direct parents and their
parents, etc.

	
children(cat: str | HierarchicalCategory) → list[set[HierarchicalCategory]]

	The list of sets of direct children of the given category.

	
descendants(cat: str | HierarchicalCategory) → set[HierarchicalCategory]

	All descendants of the given category, i.e. the direct children and their
children, etc.

	
property df: DataFrame

	All category codes as a pandas dataframe.

	
extend(*, categories: None | dict[str, dict] = None, alternative_codes: None | dict[str, str] = None, children: None | list[tuple] = None, name: str, title: None | str = None, comment: None | str = None, last_update: None | date = None) → HierarchicalCategorization

	Extend the categorization with additional categories and relationships,
yielding a new categorization.

Metadata: the name, title, comment, and last_update are updated
automatically (see below), the institution and references are deleted
and the values for version, hierarchical, total_sum, and
canonical_top_level_category are kept.
You can set more accurate metadata (for example, your institution) on the
returned object if needed.

	Parameters:

	
	categories (dict, optional) – Map of new category codes to their specification. The specification is a
dictionary with the keys “title”, optionally “comment”, and optionally
“alternative_codes”.

	alternative_codes (dict, optional) – Map of new alternative codes. A dictionary with the new alternative code
as key and existing code as value.

	children (list, optional) – List of (parent, (child1, child2, …)) pairs. The given relationships will
be inserted in the extended categorization.

	name (str) – The name of your extension. The returned Categorization will have a name
of “{old_name}_{name}”, indicating that it is an extension of the underlying
Categorization.

	title (str, optional) – A string to add to the original title. If not provided, “ + {name}” will be
used.

	comment (str, optional) – A string to add to the original comment. If not provided,
“ extended by {name}” will be used.

	last_update (datetime.date, optional) – The date of the last update to this extension. Today will be used if not
provided.

	Returns:

	Extended categorization

	Return type:

	HierarchicalCategorization

	
classmethod from_spec(spec: dict[str, Any]) → CategorizationT

	Create Categorization from a Dictionary specification.

	
is_leaf(cat: str | HierarchicalCategory) → bool

	Is the category a leaf category, i.e. without children?

	
items() → ItemsView[str, HierarchicalCategory]

	Iterate over (primary code, category) pairs.

	
leaf_children(cat: str | HierarchicalCategory) → list[set[HierarchicalCategory]]

	The sets of subcategories which are descendants of the category and do not
have children themselves.

Sets of children are chased separately, so each set of leaf children is
self-sufficient to reconstruct this category (if the categorization allows
reconstructing categories from their children, i.e. if total_sum is set).

	
level(cat: str | HierarchicalCategory) → int

	The level of the given category.

The canonical top-level category has level 1 and its children have level 2 etc.

To calculate the level, first only the first (“canonical”) set of children is
considered. Only if no path from the canonical top-level category to the
given category can be found all other sets of children are considered to
calculate the level.

	
parents(cat: str | HierarchicalCategory) → set[HierarchicalCategory]

	The direct parents of the given category.

	
show_as_tree(*, format_func: ~typing.Callable[[~climate_categories._categories.HierarchicalCategory], str] = <class 'str'>, maxdepth: None | int = None, root: None | ~climate_categories._categories.HierarchicalCategory | str = None) → str

	Format the hierarchy as a tree.

Starting from the given root, or - if no root is given - the top-level
categories (i.e. categories without parents), the tree of categories that are
transitive children of the root is show, with children connected to their
parents using lines. If a parent category has one set of children, the children
are connected to each other and the parent with a simple line. If a parent
category has multiple sets of children, the sets are connected to parent with
double lines and the children in a set are connected to each other with simple
lines.

	Parameters:

	
	format_func (callable, optional) – Function to call to format categories for display. Each category is
formatted for display using format_func(category), so format_func should
return a string without line breaks, otherwise the tree will look weird.
By default, str() is used, so that the first code and the title of the
category are used.

	maxdepth (int, optional) – Maximum depth to show in the tree. By default, goes to arbitrary depth.

	root (HierarchicalCategory or str, optional) – HierarchicalCategory object or code to use as the top-most category.
If not given, the whole tree is shown, starting from all categories without
parents.

	Returns:

	tree_str – Representation of the hierarchy as formatted string. print() it for optimal
viewing.

	Return type:

	str

	
to_spec() → dict[str, Any]

	Turn this categorization into a specification dictionary ready to be written
to a yaml file.

	Returns:

	spec – Specification dictionary understood by from_spec.

	Return type:

	dict

	
values() → ValuesView[HierarchicalCategory]

	Iterate over the categories.

	
class climate_categories.HierarchicalCategory(codes: tuple[str], categorization: HierarchicalCategorization, title: str, comment: None | str = None, info: None | dict = None)

	Bases: Category

A single category from a HierarchicalCategorization.

	
property ancestors: set[HierarchicalCategory]

	The super-categories where this category or any of its parents is a member
of any set of children, transitively.

Note that all possible ancestors are returned, not only “canonical” ones.

	
property children: list[set[HierarchicalCategory]]

	The sets of subcategories comprising this category.

The first set is canonical, the other sets are alternative.
Only the canonical sets are used to calculate the level of a category.

	
property descendants: set[HierarchicalCategory]

	The sets of subcategories comprising this category directly or indirectly.

Note that all possible descendants are returned, not only “canonical” ones.

	
property is_leaf: bool

	Is this category a leaf category, i.e. without children?

	
property leaf_children: list[set[HierarchicalCategory]]

	The sets of subcategories which are descendants of this category and do not
have children themselves.

Sets of children are chased separately, so each set of leaf children is
self-sufficient to reconstruct this category (if the categorization allows
reconstructing categories from their children, i.e. if total_sum is set).

	
property level: int

	The level of the category.

The canonical top-level category has level 1 and its children have level 2 etc.

To calculate the level, only the first (“canonical”) set of children is
considered for intermediate categories.

	
property parents: set[HierarchicalCategory]

	The super-categories where this category is a member of any set of children.

Note that all possible parents are returned, not “canonical” parents.

	
to_spec() → tuple[str, dict[str, str | dict | list]]

	Turn this category into a specification ready to be written to a yaml file.

	Returns:

	(code – Primary code and specification dict

	Return type:

	str, spec: dict)

	
climate_categories.find_code(code: str) → set[Category]

	Search for the given code in all included categorizations.

	
climate_categories.from_pickle(filepath: str | Path | IO[bytes]) → Categorization | HierarchicalCategorization

	De-serialize Categorization or HierarchicalCategorization from a file written by
to_pickle.

Note that this uses the pickle module, which executes arbitrary code in the
provided file. Only load from pickle files that you trust.

	
climate_categories.from_python(filepath: str | Path | IO[bytes]) → CategorizationT

	Read Categorization or HierarchicalCategorization from a python cache file.

Note that this executes the python cache file. Only load from python cache files
you trust.

	
climate_categories.from_spec(spec: dict[str, Any]) → CategorizationT

	Create Categorization or HierarchicalCategorization from a dict specification.

	
climate_categories.from_yaml(filepath: str | Path | TextIO) → CategorizationT

	Read Categorization or HierarchicalCategorization from a StrictYaml file.

climate_categories.search module

	
climate_categories.search.search_code(code: str, cats: Iterable[Categorization]) → set[Category]

	Search for the given code in the given categorizations.

 Data

Data

Categorizations

The categorizations included in this package are stored as YAML 1.2 files.
The data files must only use the subset of YAML’s features understood by
StrictYaml [https://github.com/crdoconnor/strictyaml].
The allowed contents are defined here.

Simple Categorizations

Non-hierarchical categorizations are stored in StrictYaml files with the following
fields:

	Key

	Type

	Notes

	Example

	name

	str

	a valid python variable name

	IPCC2006

	title

	str

	one-line description

	IPCC GHG emission categories (2006)

	comment

	str

	long-form description

	IPCC classification of green-house…

	references

	str

	citable reference(s) and sources

	IPCC 2006, 2006 IPCC Guidelines…

	institution

	str

	where the categorization is from

	IPCC

	last_update

	str

	date of last change in ISO format

	2010-06-30

	hierarchical

	bool

	has to be no, false, or False

	no

	version

	str

	optional

	2006

	categories

	map

	see below

	

The metadata attributes are inspired by the
CF conventions [https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#description-of-file-contents]
for the description of file contents.

The categories are given as a map from the primary code of the category to a
dictionary specification with the following fields:

	Key

	Type

	Notes

	Example

	title

	str

	one-line description of the category

	Energy

	comment

	str

	optional, long-form description

	Includes all GHG…

	alternative_codes

	list

	optional, alias codes

	[‘1A’, ‘1 A’]

	info

	map

	optional, arbitrary metadata

	{‘gases’: [‘CO2’, ‘NH3’]}

The examples in the table are given in python syntax. An example in YAML syntax
would be:

categories:
 '1':
 title: ENERGY
 comment: This category includes all GHG emissions arising from combustion and
 fugitive releases of fuels. Emissions from the non-energy uses of fuels are
 generally not included here, but reported under Industrial Processes and Product
 Use Sector.
 info:
 gases:
 - CO2
 - CH4
 1.A:
 title: Fuel Combustion Activities
 comment: Emissions from the intentional oxidation of materials within an apparatus
 that is designed to raise heat and provide it either as heat or as mechanical
 work to a process or for use away from the apparatus.
 alternative_codes:
 - 1A
 info:
 gases:
 - CO
 - NMVOC
 corresponding_categories_IPCC1996:
 - 1A

Hierarchical Categorizations

Hierarchical categorizations are also stored in StrictYaml files, with additional
meta data fields:

	Key

	Type

	Notes

	Example

	hierarchical

	str

	has to be yes, true, or True

	yes

	total_sum

	bool

	if parents are the sum of their children

	True

	canonical_top_level_category

	str

	optional, code of the highest category

	TOTAL

In the category specifications, an additional optional key children is introduced
which contains lists of lists of codes of children. Since some categories can be
composed of different sets of children, it is necessary to give a list of lists.

An example in StrictYaml syntax with two categories would be:

categories:
 '1':
 title: ENERGY
 comment: This category includes all GHG emissions arising from combustion and
 fugitive releases of fuels. Emissions from the non-energy uses of fuels are
 generally not included here, but reported under Industrial Processes and Product
 Use Sector.
 info:
 gases:
 - CO2
 - CH4
 children:
 - - 1.A
 - 1.B
 1.A:
 title: Fuel Combustion Activities
 comment: Emissions from the intentional oxidation of materials within an apparatus
 that is designed to raise heat and provide it either as heat or as mechanical
 work to a process or for use away from the apparatus.
 alternative_codes:
 - 1A
 info:
 gases:
 - CO
 - NMVOC
 corresponding_categories_IPCC1996:
 - 1A

Conversions

Conversion rules between categorizations included in this package are stored in comma
separated value files with a tightly specified format.
Commas separate fields, and can be escaped using a backslash.
Two consecutive backslashes are read as a single backslash.

The file consists of a YAML meta data block at the start of the file, and a data block
following it.
The YAML meta data block lines start with the comment char ‘#’.

Meta data block

The meta data bloc consists of key-value pairs, one on each line, key and value
separated by a colon.
All meta data are optional, the allowed keys are:

	Key

	Type

	Notes

	Example

	comment

	str

	Notes and explanations for humans.

	Rules for agriculture are still missing.

	references

	str

	Citable reference(s) for the conversion.

	doi:10.00000/00

	institution

	str

	Where the conversion originates.

	PIK

	last_update

	date

	ISO format of the date of the last change.

	1999-12-31

	version

	str

	The version, if there are multiple.

	2.3

Data block

The data block starts with a header which defines the data columns.
The first column must be the name of the first categorization, the following columns
are the names of auxiliary categorizations, the penultimate column must be the name
of the second categorization, and the last column must be comment.

After the header, any number of rules follow, with one rule per line.
Each rule consists of:

	A formula for the first and second categorizations each, defining which categories
are converted into each other.

	A list of categories for each auxiliary categorization, limiting the validity of the
rule to specific categorizations.

The formulas contain sums and differences of category codes.
The lists of auxiliary category codes are separated by whitespace.
In formulas and lists, category codes that
consist of alphanumeric characters and dots can be written directly, and other category
codes must be enclosed in " characters.

Example

comment: an example conversion
institution: PIK
IPCC1996,gas,IPCC2006,comment
4 + 5,,3,Both sectors were combined
4.D,N2O,3.C.4 + 3.C.5,N2O emissions are separated into own categories

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/pik-primap/climate_categories/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

New categorizations

Especially welcome are new categorizations, which are not included in climate_categories
so far. Pull requests and issue reports at github are very welcome!

The categorizations are read from
StrictYaml [https://github.com/crdoconnor/strictyaml] files located at
climate_categories/data/.
You can write a yaml definition by hand, but ideally, categorizations are generated
from some canonical source automatically, so that the generation is reproducible and
transparent.
Scripts to generate categorizations are located in the data_generation folder and
write their results directly to climate_categories/data/. For each data file, a
target should be included in the top-level Makefile. Do not include source pdfs with
non-free copyright licenses into the git repository. Instead, download them in the
data generation scripts (see data_generation/IPCC2006.py for an example how to
do that efficiently with caching).

Because all Categorizations are read in when importing climate_categories and
parsing StrictYaml files is not very efficient, the categories should be also stored
as cached Python files using the to_python instance method.
Run make cache to generate these from the YAML files.

New conversions

Especially welcome as well are new conversions between categorizations, which are not
included in climate_categories so far. Pull requests and issue reports at github are
very welcome!

The conversions are read from CSV files located at climate_categories/data/.
You can write a CSV definition by hand, but ideally, conversions are also generated
from some canonical source automatically, so that the generation is reproducible and
transparent.
As the scripts to generate categorizations, the scripts to generate conversion files are
located in the data_generation folder and write their results directly to
climate_categories/data/.

Conversion files are read on demand and therefore no pickle files need to be generated.

Write Documentation

Climate categories could always use more documentation, whether as part of the
official Climate categories docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/pik-primap/climate_categories/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up climate_categories for local development.

	Fork the climate_categories repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/climate_categories.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper
installed, this is how you set up your fork for local development:

$ cd climate_categories/
$ make virtual-environment
$ make install-pre-commit

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass our tests and
automatically format everything according to our rules:

$ make lint

Often, the linters can fix errors themselves, so if you get failures, run
make lint again to see if any errors need human intervention.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring and check the generated
API documentation.

	The pull request will be tested on python 3.9, 3.10, and 3.11.

Deploying

A reminder for the maintainers on how to deploy.

	Commit all your changes.

	Run tbump X.Y.Z.

	Wait a bit that the release on github and zenodo is created.

	Run make README.rst to update the citation information in the README from the
zenodo API. Check if the version is actually correct, otherwise grab a tea and
wait a little more for zenodo to mint the new version. Once it worked, commit the
change.

	Upload the release to pyPI: make release

 Credits

Credits

Developers

	Mika Pflüger <mika.pflueger@climate-resource.com>

	Annika Günther <annika.guenther@pik-potsdam.de>

	Johannes Gütschow <johannes.guetschow@pik-potsdam.de>

	Robert Gieseke <rob.g@web.de>

Libraries

This package was originally created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the
audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Changelog

Changelog

0.10.1 (2024-01-25)

	ISO3_GCAM: Removed extraneous “v” from version specifications in region codes

0.10.0 (2024-01-25)

	Added ISO3_GCAM categorization which contains regions used in the integrated assessment model GCAM.

0.9.2 (2023-06-22)

	ISO3: Add all parties to the UNFCCC as direct children of UNFCCC as first set of
children. That way, it is easy to ergonomically get all parties to the UNFCCC without
adding up Annex-I and Non-Annex-I parties manually.

0.9.1 (2023-06-15)

	Add AOSIS country group to ISO3 categorization.

0.9.0 (2023-06-14)

	Add ISO3 terminology for countries, areas, and country groups including UNFCCC
signatories and Annex-I and Non-Annex-I groups and the evolution of the EU over time.

0.8.5 (2023-05-23)

	Re-release again.

0.8.4 (2023-05-23)

	Re-release to make sure py.typed is included in built package.

0.8.3 (2023-05-23)

	add py.typed file to announce this library is using type hints.

0.8.2 (2023-05-15)

	Remove pygments-csv-lexer dependency for docs building.

	Add function to find leaf children of a category, useful for re-calculating top-level
categories from constituents.

0.8.1 (2023-04-26)

	regenerate data included in the package to benefit
from latest fixes in data generation scripts.

0.8.0 (2023-04-26)

	Add updated CRF2013 terminologies for 2021, 2022, and 2023 submission rounds

	The unfccc DI API recently returns unspecified measure IDs.
data_generation/CRFDI_class.py was fixed to ignore them.

	Add CRF2013 terminology for data submitted by AnnexI countries to the UNFCCC

	Drop support for Python 3.7 and 3.8, add support for Python 3.11

0.7.1 (2021-11-25)

	Change conversion metadata format to use comment chars and a YAML header.

0.7.0 (2021-11-25)

	Use Python files instead of pickle objects for caching

0.6.3 (2021-11-05)

	Export Category and HierarchicalCategory types.

	Add ConversionRule.is_restricted attribute to easily check if a rule is restricted to
specific auxiliary categories.

0.6.2 (2021-11-05)

	Export Conversion and ConversionRule types.

0.6.1 (2021-11-04)

	Add emissions categorization from the Reduced Complexity Model Intercomparison Project (RCMIP) [https://www.rcmip.org/]. Thanks to Robert Gieseke for the contribution and Zeb Nicholls for input.

0.6.0 (2021-10-22)

	Automate changelog generation from snippets - avoids resolving merge conflicts
manually

	Automate github releases.

	Add category “0” (National total) to IPCC1996 and IPCC2006 categorizations. While it
is not in the official specification, it is widely used and adding it also enables
automatically assigning a level to all other categories.

	Add categorization CRF1999 used within in the common reporting framework data.

	Refactor rendering of large categorizations using show_as_tree(), adding more
clarity to alternative child sets. Add usage documentation for show_as_tree().
Thanks to Robert Gieseke for feedback.

	Fixes for IPCC2006 categorization (and IPCC2006_PRIMAP):

	proper title for category 3.B.3.a “Grassland Remaining Grassland”

	correct corresponding 1996 category for category 1.A.4.c.ii

	Fixes for IPCC1996 categorization:

	category 4.B.10 has the correct title “Anaerobic Lagoons”

	correct usage of units in the titles of categories 4.C.3.a and 4.C.3.b

	Add mechanism to describe conversions between categorizations.

	Add conversion between IPCC2006 and IPCC1996.

	Add algorithm to detect over counting in conversions between categorizations.

	Refactor generation of IPCC2006 and IPCC1996 categorizations.

	Add function to find unmapped categories in a conversion.

0.5.4 (2021-10-18)

	Add Global Carbon Budget categorization.

0.5.3 (2021-10-12)

	Add gas categorization which includes commonly used climate forcing substances.

0.5.2 (2021-05-18)

	Add IPCC2006_PRIMAP categorization.

	Add refrigerant sub-classes and additional codes to CRFDI_class.

0.5.1 (2021-05-04)

	Add BURDI, CRFDI, BURDI_class, and CRFDI_class categorizations and scripts to generate
them from the UNFCCC DI flexible query API.

0.5.0 (2021-03-23)

	Switch to_yaml() output to ruamel.yaml so that valid, correctly typed YAML 1.2
is written. This should enable easier re-use of the data in other contexts.

	Consistently use title case for titles in IPCC categorizations.

0.4.0 (2021-03-17)

	Add more unit tests.

	Add consistency tests for IPCC categorizations.

	Update documentation.

	Add data format documentation.

0.3.2 (2021-03-16)

	Use tbump for simpler versioning.

0.3.1 (2021-03-16)

	Properly include data files in binary releases.

0.3.0 (2021-03-16)

	Add IPCC1996 categorization and scripts to generate it from the source pdf.

	Change packaging to declarative style.

	Automate generation of pickled files via Makefile.

	Automate loading of included categorizations.

0.2.2 (2021-03-09)

	Re-release again to trigger zenodo.

0.2.1 (2021-03-09)

	Re-release to include correct changelog.

0.2.0 (2021-03-09)

	Introduce API for multiple codes and multiple children.

	Implement classes and functions.

	Add IPCC2006 categorization and scripts to generate it from the source pdf.

0.1.0 (2021-01-18)

	First release on PyPI.

	Contains documentation and a stub API for querying, but no working code yet.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 climate_categories	

 	
 	
 climate_categories.search	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	all_keys() (climate_categories.Categorization method)

 	ancestors (climate_categories.HierarchicalCategory property)

 	
 	ancestors() (climate_categories.HierarchicalCategorization method)

 	auxiliary_categories (climate_categories.ConversionRule attribute)

 	auxiliary_categorizations (climate_categories.Conversion attribute)

C

 	
 	canonical_top_level_category (climate_categories.HierarchicalCategorization attribute)

 	cardinality_a (climate_categories.ConversionRule attribute)

 	cardinality_b (climate_categories.ConversionRule attribute)

 	Categorization (class in climate_categories)

 	categorization_a (climate_categories.Conversion attribute)

 	categorization_b (climate_categories.Conversion attribute)

 	Category (class in climate_categories)

 	children (climate_categories.HierarchicalCategory property)

 	children() (climate_categories.HierarchicalCategorization method)

 	
 	
 climate_categories

 	module

 	
 climate_categories.search

 	module

 	comment (climate_categories.Categorization attribute)

 	(climate_categories.Conversion attribute)

 	(climate_categories.ConversionRule attribute)

 	Conversion (class in climate_categories)

 	conversion_to() (climate_categories.Categorization method)

 	ConversionRule (class in climate_categories)

D

 	
 	descendants (climate_categories.HierarchicalCategory property)

 	descendants() (climate_categories.HierarchicalCategorization method)

 	
 	describe_detailed() (climate_categories.Conversion method)

 	df (climate_categories.Categorization property)

 	(climate_categories.HierarchicalCategorization property)

E

 	
 	extend() (climate_categories.Categorization method)

 	(climate_categories.HierarchicalCategorization method)

F

 	
 	factors_categories_a (climate_categories.ConversionRule attribute)

 	factors_categories_b (climate_categories.ConversionRule attribute)

 	find_code() (in module climate_categories)

 	find_over_counting_problems() (climate_categories.Conversion method)

 	find_unmapped_categories() (climate_categories.Conversion method)

 	format_human_readable() (climate_categories.ConversionRule method)

 	format_with_lineno() (climate_categories.ConversionRule method)

 	from_pickle() (climate_categories.Categorization static method)

 	(in module climate_categories)

 	
 	from_python() (climate_categories.Categorization static method)

 	(in module climate_categories)

 	from_spec() (climate_categories.Categorization class method)

 	(climate_categories.HierarchicalCategorization class method)

 	(in module climate_categories)

 	from_yaml() (climate_categories.Categorization class method)

 	(in module climate_categories)

H

 	
 	hierarchical (climate_categories.Categorization attribute)

 	
 	HierarchicalCategorization (class in climate_categories)

 	HierarchicalCategory (class in climate_categories)

I

 	
 	institution (climate_categories.Categorization attribute)

 	(climate_categories.Conversion attribute)

 	is_leaf (climate_categories.HierarchicalCategory property)

 	
 	is_leaf() (climate_categories.HierarchicalCategorization method)

 	is_restricted (climate_categories.ConversionRule attribute)

 	items() (climate_categories.Categorization method)

 	(climate_categories.HierarchicalCategorization method)

K

 	
 	keys() (climate_categories.Categorization method)

L

 	
 	last_update (climate_categories.Categorization attribute)

 	(climate_categories.Conversion attribute)

 	leaf_children (climate_categories.HierarchicalCategory property)

 	
 	leaf_children() (climate_categories.HierarchicalCategorization method)

 	level (climate_categories.HierarchicalCategory property)

 	level() (climate_categories.HierarchicalCategorization method)

M

 	
 	
 module

 	climate_categories

 	climate_categories.search

N

 	
 	name (climate_categories.Categorization attribute)

P

 	
 	parents (climate_categories.HierarchicalCategory property)

 	
 	parents() (climate_categories.HierarchicalCategorization method)

R

 	
 	references (climate_categories.Categorization attribute)

 	(climate_categories.Conversion attribute)

 	relevant_rules() (climate_categories.Conversion method)

 	
 	reversed() (climate_categories.Conversion method)

 	(climate_categories.ConversionRule method)

 	rules (climate_categories.Conversion attribute)

S

 	
 	search_code() (in module climate_categories.search)

 	
 	show_as_tree() (climate_categories.HierarchicalCategorization method)

T

 	
 	title (climate_categories.Categorization attribute)

 	to_pickle() (climate_categories.Categorization method)

 	to_python() (climate_categories.Categorization method)

 	to_spec() (climate_categories.Categorization method)

 	(climate_categories.Category method)

 	(climate_categories.ConversionRule method)

 	(climate_categories.HierarchicalCategorization method)

 	(climate_categories.HierarchicalCategory method)

 	
 	to_yaml() (climate_categories.Categorization method)

 	total_sum (climate_categories.HierarchicalCategorization attribute)

V

 	
 	values() (climate_categories.Categorization method)

 	(climate_categories.HierarchicalCategorization method)

 	
 	version (climate_categories.Categorization attribute)

 	(climate_categories.Conversion attribute)

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to climate_category’s documentation!

 		
 Climate categories

 		
 Included categorizations

 		
 Included conversions between categorizations

 		
 Status

 		
 License

 		
 Citation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Categorizations

 		
 Included categorizations

 		
 Visualization

 		
 Child sets in hierarchical categorizations

 		
 Finding leaf descendants

 		
 Extending categorizations

 		
 Pandas integration

 		
 Finding unknown codes

 		
 Conversions

 		
 Included conversions

 		
 Finding inconsistencies

 		
 Viewing the full conversion

 		
 API

 		
 Module contents

 		
 Categorization

 		
 Category

 		
 Conversion

 		
 ConversionRule

 		
 HierarchicalCategorization

 		
 HierarchicalCategory

 		
 find_code()

 		
 from_pickle()

 		
 from_python()

 		
 from_spec()

 		
 from_yaml()

 		
 climate_categories.search module

 		
 Data

 		
 Categorizations

 		
 Simple Categorizations

 		
 Hierarchical Categorizations

 		
 Conversions

 		
 Meta data block

 		
 Data block

 		
 Example

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 New categorizations

 		
 New conversions

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Deploying

 		
 Credits

 		
 Developers

 		
 Libraries

 		
 Changelog

 		
 0.10.1 (2024-01-25)

 		
 0.10.0 (2024-01-25)

 		
 0.9.2 (2023-06-22)

 		
 0.9.1 (2023-06-15)

 		
 0.9.0 (2023-06-14)

 		
 0.8.5 (2023-05-23)

 		
 0.8.4 (2023-05-23)

 		
 0.8.3 (2023-05-23)

 		
 0.8.2 (2023-05-15)

 		
 0.8.1 (2023-04-26)

 		
 0.8.0 (2023-04-26)

 		
 0.7.1 (2021-11-25)

 		
 0.7.0 (2021-11-25)

 		
 0.6.3 (2021-11-05)

 		
 0.6.2 (2021-11-05)

 		
 0.6.1 (2021-11-04)

 		
 0.6.0 (2021-10-22)

 		
 0.5.4 (2021-10-18)

 		
 0.5.3 (2021-10-12)

 		
 0.5.2 (2021-05-18)

 		
 0.5.1 (2021-05-04)

 		
 0.5.0 (2021-03-23)

 		
